
Introduction

The non-isothermal analysis is frequently used to char-
acterize the thermal decomposition of catalyst precur-
sors. Kinetic analysis of the thermoanalytical, espe-
cially the thermogravimetric (TG) data, leads very
seldom to the intimate reaction mechanism [1–4].

If the kinetic studies are carried out on a series of
similar precursors, one can probe deeper the compen-
sation effect (CE), i.e. the linear dependence of
activation energy (E) and natural logarithm of pre-ex-
ponential factor (lnA). Unfortunately, the CE is a
source of continuous debate [5, 6], the reality of this
effect being sometimes questioned.

In the classical expression of the CE

lnA=bE+c (1)

it is difficult to use E or the corresponding isokinetic
temperature Tiz=1/bR for any considerations on the
mechanism in a studied series of compounds [7].

In a previous work [2] we found quite near values
for the Tiz from Eqs (1) and (2), respectively, by the
non-isothermal decomposition of formates, acetates,
propionates and butyrates of d and f metals. The kinetic
analysis was performed by the Flynn–Wall [8] and
Ozawa [9] integral method. This analysis was contin-
ued [3] using the Friedman’s isoconversional method
and the method of Budrugeac and Segal [10–12], and
also a linear relationship between E and lnA was ob-
tained. Noticeable is that this result, was obtained with
the main assumption that E and A depend on the degree
of conversion and do not depend on the heating rate.

In the present paper we continue the kinetic
studies by using the non-parametric kinetic method
(NPK) for obtaining A and E parameters.

Results and discussion

The experimental data are presented in Table 1.

Processing of the TG data

The NPK method [13–15] allows the separation of
two or more steps of a complex process. It is based on
the presumption of the following equation for the
reaction rate:

d

d

α α
t

g f T= ( ) ( ) (2)

NPK regards the reaction rate as a surface in a
three dimensional space where the axis are the degree of
conversion (α), the temperature (T) and the reaction rate
(dα/dt or βdα/dT) with β – the constant heating rate.

This surface is continuous and can be discretised
and organized in a i×j matrix, where the columns ac-
count for the temperature Tj (j – 1,m) and the rows
reffer to different degrees of conversion αi (i – 1,n), i.e.

A=g(αi)f(Tj) (3)

The NPK method uses the singular value decom-
position (SVD) [16] algorithm to decompose matrix A:

A=U(diag S)VT (4)
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If the matrix A has a singular significant value of
the vector S, it seems the decomposition reaction
takes place by one elementar step.

If the matrix A has two significant values S1 and
S2, there are two elementar processes, and the
discrimination between them depends on the values
of the corresponding explained variance λ1 and λ2

(λ1+λ2≈100%).

The TG data were interpolated with a logistical
function and finally numerical derivated. The surface of
the reaction rate was obtained by multivariant regres-
sion, and then the matrix A (Eq. (3)) was generated.

After applying the SVD algorithm, two signifi-
cant S values were obtained, for a preponderant (S1) re-
spective a secondary (S2) process. In this case, the ma-
trix A is a sum:
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Table 1 The studied compounds and the characteristics of the decomposition step [3]

Samples
Mass loss calculated

∆mtheor/mg

Mass loss experimental, ∆mexp/mg by different heating rates

2.5 K min–1 5 K min–1 10 K min–1 20 K min–1

formates
Zn(HCOO)2

Cu(HCOO)2

Ni(HCOO)2

Co(HCOO)2

37
38.5
17
41

–
–
–
–

34
34
16
40

34
37
17
43

34.5
36
20
41

acetates
Mn(CH3COO)2

Zn(CH3COO)2

Sm(CH3COO)3

Eu(CH3COO)3

Cd(CH3COO)2

45.3
30.6
26.4
25.5
39.3

45.5
–

27.8
–
37

45
41
25
23.6
36.3

46.6
39.5
25.2
24
37.7

–
40.6
–

26.5
–

propionates
Cd(C2H5COO)2

Mn(C2H5COO)2

Zn(C2H5COO)2

Ni(C2H5COO)2

Cu(C2H5COO)2

28.5
45.3
66
31
58.9

30.5
–
64
30
59.5

–
45.6
–
–
–

27.5
45.5
71
34.8
56.8

28.5
44
66
33.6
56.5

butyrates
Cu(C3H7COO)2

Ni(C3H7COO)2

Sm(C3H7COO)3

Zn(C3H7COO)2

56
50
20.4
70.3

–
–
–
–

55.9
48
17
71.5

55.8
50
22.2
70

56.8
50.9
24
70.5

Table 2 NPK parameters for the preponderant process

Compound λ/% E/kJ mol–1 A/min–1 n
(ec. S-B)

m
(ec. S-B)

Zn(HCOO)2

Cu(HCOO)2

Co(HCOO)2

68.7
99.3
84.1

165.1
69.29

201.5

7.589⋅1016

3.683⋅108

2.52⋅1018

1
1
2

–
–
–

Mn(CH3COO)2

Zn(CH3COO)2

Sm(CH3COO)3

Eu(CH3COO)3

Cd(CH3COO)2

89.7
87.7
80.6
67.8
90.0

47.75
87.98

145.2
164.0
52.1

2.42⋅104

2.49⋅108

1.59⋅1013

1.64⋅108

9.97⋅104

3/2
3/2
2
1
2

1
1
–
2
1

Cd(C2H5COO)2

Mn(C2H5COO)2

Zn(C2H5COO)2

Ni(C2H5COO)2

Cu(C2H5COO)2

53.4
56.6
97.4
59.8
66.8

25.7
76.3
90.5

108.0
103.0

72.9
1.30⋅107

7.60⋅107

4.52⋅1010

2.31⋅1010

1
3/2
1/2
3
2

3/2
1
–
–
1

Cu(C3H7COO)2

Ni(C3H7COO)2

Sm(C3H7COO)3

Zn(C3H7COO)2

96.4
56.2
76.1
56.5

108.9
12.9

235.2
72.3

1.13⋅1011

5.49
1.81⋅1020

1.32⋅106

1
1
1
1

–
1
–
1



A = A A1 2
T T+ = +u v u v1 1 2 2 (5)

We assume for the temperature dependence (ele-
ments of v1 and v2 vectors) an Arrhenius function and
for the conversion dependence (elements of u1 and u2

vectors) a �esták–Berggren [17] equation.

g(α)=αm(1–α)n (6)

Using the above described procedure, the data in
Tables 2 and 3 were obtained.

By inspecting the values in Tables 2 and 3, the
parallel variation of lnA vs. E is observed by each se-
ries of carboxylates. In means the presence of a com-
pensation effect.

The isokinetic temperatures, calculated accord-
ing to Eq. (1), are systematized in Table 4.

The way of the TG data processing avoids any
subjective considerations or approximations. Never-
theless, the absence of a noticeable regularity in the

variation of Tiz values or of E and lnA pairs with the
anion type make it difficult to discuss the reaction
mechanism.

Conclusions

• data processing by the NPK methods allows to ob-
tain the kinetic parameters in an objective manner,
without any approximations

• the observed compensation effect is therefore a real
phenomenon and the corresponding isokinetic tem-
perature is able to have a real significance
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Table 3 NPK parameters for the secondary process

Compound λ/% E/kJ mol–1 A/min–1 n
(ec. S-B)

m
(ec. S-B)

Zn(HCOO)2

Cu(HCOO)2

Co(HCOO)2

30.8
0.7
11.4

66.36
721.0
29.7

6.13⋅105

4.4⋅1092

58.69

1
–

3/2

–
2
1

Mn(CH3COO)2

Zn(CH3COO)2

Sm(CH3COO)3

Eu(CH3COO)3

Cd(CH3COO)2

9.9
9.7
15.6
29.3
7.5

332.0
315.4
169.7
213.0
417.0

3.97⋅1032

3.02⋅1030

7.93⋅1014

4.65⋅1019

2.08⋅1042

1
1
2
1
1

2
3/2
2/3
–
2

Cd(C2H5COO)2

Mn(C2H5COO)2

Zn(C2H5COO)2

Ni(C2H5COO)2

Cu(C2H5COO)2

41.8
38.7
2.0
35.1
32.5

202.3
162.0
72.74
478.0
182.0

3.27⋅1017

1.26⋅1015

3.44⋅106

6.89⋅1047

8.37⋅1017

1
–
2
2
–

–
2

2/3
2/3
2

Cu(C3H7COO)2

Ni(C3H7COO)2

Sm(C3H7COO)3

Zn(C3H7COO)2

2.4
38.9
23.2
38.2

349.7
373.2
224.8
159.8

4.93⋅1036

4.03⋅1034

3.83⋅1018

1.21⋅1014

1
1
1
1

–
–
–
–

Table 4 The isokinetic temperature for the preponderant and
secondary processes

Compound series

Isokinetic temperature, Tiz/K
acc. Eq. (1)

preponderant
process

secondary
process

formates 680 396

acetates 582 474

propionates 492 509

butyrates 596 479
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